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Abstract. The most puzzling aspect of the glass transition observed in laboratory is the decoupling of the
dynamics from the structure. As an attempt to reconcile the dynamic and the static lengthscales associated
with the glass problem, we discuss the apparent correlations between the static relaxation length, defined
as that lengthscale over which the potential energy fluctuation is correlated, with the linear size of the
dynamic heterogeneity. The dynamic heterogeneous domains with long life-times, may therefore be linked
to the droplets of low potential energy, or the tightly bound regions inside the liquid.

PACS. 64.70.Pf Glass transitions

1 Introduction

In the structural glass phenomenology, it is the super-
Arrehnius slowing down of the transport properties that
is most striking [1]. In particular, the fragile glass-
forming liquids are distinguished by a highly temperature-
dependent effective energy barrier Eeff(T ) [2], in their
thermally activated expression for the structural or α re-
laxation time

τα(T ) = τ∞ exp(Eeff(T )/kBT ) (1)

where, τ∞ ∼ 10−13 s is a high-T relaxation time, and
kB is the Boltzmann constant. The temperature varia-
tion of τα(T ) for the fragile liquids, is described over a
wide range of temperatures by the empirical Vogel-Fulcher
(VF) equation [3]:

τα(T ) = τ∞ exp[DT0/(T − T0)] (2)

where, D is a material-specific constant, and the appar-
ent divergence temperature T0 is called the Vogel-Fulcher
temperature, which is often found to be very close to the
Kauzmann temperature TK [4] where the configurational
entropy of the liquid appears to vanish if it were to stay in
equilibrium [5]. We note, however, that equation (2) auto-
matically predicts a phase transition at T0 [6], as in finite
dimensions and short-range interactions a diverging time
is normally accompanied by a diverging length. In fact,
the very large energy barrier Eeff(Tg) ∼ 30 kBTg observed
for the rather weakly bonded fragile liquids at the labora-
tory glass temperature Tg, is regarded as an indication for
the cooperative nature of the relaxation dynamics. Several
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different equilibrium theories of the structural glass tran-
sition, invoke an increasing static correlation length that
diverges as a power-law ξ ∼ (T −TK)−ν at TK ≈ T0 [7–9].
However, they do not seem to agree on a common value
for the exponent ν (see, Tab. 1). As the dynamics is acti-
vated, even a small correlation length can lead to macro-
scopically large values for τα(T ), exceeding the observa-
tion time: thus, the falling out of equilibrium of the liquid
at the laboratory glass temperature Tg = 1.28 ± 5.8% T0,
which is conveniently defined as that temperature where
τα(Tg) ≈ 103 s [2].

From another perspective, and unlike the simple liq-
uids treated as homogeneous, deeply supercooled liquids
also are distinguished by the existence of dynamically het-
erogeneous domains, typically a few nanometers across,
and relaxation times that vary by several orders of mag-
nitude [10,11]. The multi-dimensional nuclear magnetic
resonance measurements [10,12], find a dynamic hetero-
geneity size, ξhet = 2–3 nm, or 5 or more atomic diam-
eters near Tg for the most fragile of the liquids. The re-
sults obtained from a fluctuation theory using the heat
capacity spectroscopy data are similar [13], though some
times higher [14]. As for their temperature-dependence,
more recent experimental procedures have discovered a
growing dynamic length accompanying the glass forma-
tion in colloidal and molecular liquids [15], and a re-
cent theoretical model suggests a power-law divergence
for this strictly dynamical lengthscale at T0 such that
ξhet ∼ (T−T0)−1 [16]. Of course, the heterogeneity of time
suggests possible heterogeneity in the structure. However,
the question of whether the dynamic heterogeneity cor-
responds to any static correlation in the liquid structure,
remains unclear to date. Indeed, a detailed knowledge of
the sizes of the static and the dynamic lengthscale, their
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temperature dependencies, and their correlation (if any)
can significantly advance our knowledge of the structural
glass transition [10].

In a previous work [17], a Bond Ordering (BO) scenario
is proposed for a supercooled liquid in which we discuss the
correlated relaxation of the bonds (as local configurational
energy entities) into low-lying energy states, uncorrelated
with the density ordering or crystallization [18,19]. In this
bond ordering picture of a supercooled liquid, the struc-
tural specific heat Cs, arising from the potential energy
fluctuation, emerges as the thermal susceptibility associ-
ated with the static length for cooperative relaxation of
the bonds. This static length of relaxation, ξBO, is that
lengthscale over which the potential energy fluctuation is
correlated, and thus defines the typical size of a droplet
of low configurational energy inside the system. The sce-
nario predicts a growing (and possibly diverging) Cs or
ξBO with the lowering temperature for the fragile liquids,
which has been corroborated by the recent Monte Carlo
(MC) simulations of a model glass-forming liquid by Fer-
nandez et al. They find that potential energy fluctuation,
is correlated over distances much larger than the short
range of the interatomic pair interaction in a Binary Mix-
ture of Lennard-Jones (BMLJ) particles [20]. This is made
evident by studying the finite-size effects in the equilib-
rium at the normally inaccessible temperatures using a
local swap MC dynamics. Furthermore, the recent iso-
configurational ensemble molecular dynamics simulations
have identified droplets of low potential energy in a model
water that correlate with dynamic heterogeneities in the
form of clusters of low molecular mobility [21]. A molecule
in a tightly bound region tends to be less mobile, and the
larger the region, the more constrained is the movement
of the molecule. In the present paper, we expand on the
concept of cooperative bond ordering in order to empha-
size the apparent correlations between the static relax-
ation length, as the average linear size of droplets of low
potential energy inside the liquid, and the typical linear
size of dynamic heterogeneities with life-times of the order
of the structural relaxation time, using some of the most
recent results.

The rest of this paper is organized as follows. In Sec-
tion 2 we recount the implications of a Potential Energy
Landscape (PEL) view of the dynamics relevant to our
discussion. The main conclusion drawn in that section,
paves the way in Section 3 for a phenomenological deter-
mination of the structural specific heat Cs for the fragile
liquids, and ξBO is determined from Cs using an energy
version of Fisher scaling law. We also discuss, in Section 3,
some important observations with regard to the linear size
of dynamic heterogeneity ξhet, and its apparent correla-
tions with the static relaxation length ξBO. A summary of
our main findings appears in Section 4.

2 Lesson from PEL

It is a long held view that in supercooled liquids, the
macroscopic dynamics is dominated by the topographic
properties of the system’s PEL [22,23]: the long-time

structural or α relaxation is dictated by thermally ac-
tivated crossing of the potential energy barriers sepa-
rating different valleys of the potential energy surface
Φ(r1, . . . , rN ), defined over the 3N-dimensional configu-
rational space of the liquid, composed of N atoms. It has
been pointed out that activated transport over the poten-
tial energy barriers begins to dominate at low tempera-
tures, where Eeff(T ) > 5kBT [22]. This description of the
bulk dynamics in terms of the (3N+1)-dimensional PEL,
facilitates the study of collective phenomena in viscous
liquids [24].

More recently, it has been demonstrated by the molec-
ular dynamics simulations of the BMLJ liquid that
the concept of activated hopping between whole super-
structures of many PEL minima, called PEL Metabasins
(MBs), is central to a quantitative description of the
bulk dynamics in a supercooled liquid [25,26]. Here,
the time evolution of the system is regarded as a se-
quence of MB visits each with a residence time τ . The
mean residence/escape time from a single MB of en-
ergy e is well described by an Arrhenius law 〈τ(e, T )〉 =
τ∞ exp(E(e)/kBT ), where the MB energy, e, is defined as
the energy of the lowest local minimum within the MB.
The activation barrier E(e), is found to only depend on
the depth of the MB [26,27]: E(e) ∼ −e. Thus, the lower
the e, the higher is the activation barrier E(e). A suitable
average over the MBs visited by the system’s representa-
tive point at a given temperature, thus defines the aver-
age residence time 〈τ(T )〉 that corresponds to the (super-
Arrehnius) α relaxation time:

τ∞/〈τ(T )〉 =
∫

de p(e, T ) exp(−E(e)/kBT )

≡ exp(−Eeff(T )/kBT ) (3)

where, p(e, T ) de is the fraction of MBs within the en-
ergy range (e, e+de) visited by the representative point
at T . Clearly, Eeff(T ) can be interpreted as an average
over the potential energy barriers E(e) ∼ −e, encoun-
tered by the liquid at a given temperature. An spectacu-
lar demonstration of this assertion is the concurrence be-
tween the crossover to super-Arrehnius relaxation, and
the commencement of the variation with the tempera-
ture of 〈e(T )〉 in a molecular dynamics simulation of 80:20
BMLJ model liquid (see, Fig. 1 in [28]). In order to bet-
ter illustrate the close correlation between Eeff(T ) and
〈e(T )〉, we plot in Figure 1 the dynamic energy barrier
Eeff(T ) ≡ kBT ln(τα(T )/τ∞) against the average value of
the PEL minima 〈e(T )〉, for the temperatures accessed
using the data of reference [28]. The units employed are
the natural energy units for BMLJ liquid, and data points
correspond to those temperatures where the system can
be accessed in equilibrium in molecular dynamics simula-
tions. This indicates that, among other things, the effec-
tive energy barrier embodied in the VF equation may also
be used as an estimate for the temperature variation of
〈e(T )〉, or that of the average potential energy density of
the liquid 〈φ〉 = 〈Φ〉/N :

Eeff(T ) ∼ −〈φ〉(T ). (4)
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Fig. 1. The dynamical activation energy Eeff(T ) is plotted
against the average depth of the PEL 〈e(T )〉 for the temper-
atures accessed using the data of reference [28], in order to
illustrate their correlation. Solid line is the least squares fit to
the data points.

Table 1. Three different theoretical static lengths at Tg for
the fragile end of the spectrum, are tabulated for comparison.

Model ν ξ(Tg)/ξ∞
Bond Ordering [17] 1 7.0
Mean Field [9] 2/3 3.7
Adam–Gibbs [7] 1/3 1.9

There is no doubt that the average potential energy den-
sity strongly influences the bulk dynamics of the liquid. It
should be pointed out that equation (4) neglects the en-
tropic contributions to free energy barriers. Subsequently,
our description of the liquid dynamics in the following
section is different from the entropic theories (see also
Tab. 1).

3 Cooperative bond ordering

The strong dependence of macroscopic dynamics of a su-
percooled liquid on its mean potential energy density, as
pointed out in Section 2, suggests that the mesoscopic dy-
namics notably manifested in dynamically heterogeneous
domains, may also be linked to droplets of low potential
energy inside the liquid. This, and the lack of any dis-
cernible two-point density correlations [29], are the main
motivating factors for a bond ordering picture of a super-
cooled liquid in which a central quantity is the four-point
bond energy correlation function 〈φijφlm〉 − 〈φij〉〈φlm〉,
where φij is the short-range pair interaction potential of
atoms labeled i and j [17]. By bond ordering, we refer
to the correlated relaxation of the bonds (or pair interac-
tions) into low-lying energy states, uncorrelated with the
density ordering or crystallization, where the bonds as lo-
cal configurational energy entities take the place of atoms,
as the main statistical objects. The average length over

which the bond energy fluctuations are correlated thus de-
fines the static length of cooperative relaxation ξBO, which
also sets the lengthscale for the droplets of low potential
energy, or the tightly bound regions, inside the liquid.

3.1 Static length of relaxation in fragile liquids

The four-point potential energy density correlation func-
tion is defined by

G4(r) ≡ 〈φ(r)φ(0)〉 − 〈φ〉2 (5)

where, φ(0) is the potential energy of a reference bond at
the origin, and φ(r) is that of a bond at the location r.
The general behavior of the above four-point correlator is
given by the Ornstein-Zernick form

G4(r) ∼ exp(−r/ξBO)/rd−2+η′
(6)

where, η′ is the power-law decay exponent, d is the space
dimension, and ξBO sets the lengthscale for the expo-
nential decay of the potential energy correlator, or the
tightly bound regions inside the system [30]. Furthermore,
the thermal susceptibility Cs is related to ξBO via the
fluctuation-response equation

Cs =
1

kBT 2

∫
ddrG4(r)

∼
∫ ξBO

ddr/rd−2+η′ ∼ ξ2−η′
BO . (7)

From equation (7), it is easy to see that η′ is related to the
power-law increase exponent α of the structural specific
heat, and that of the static relaxation length ν, through
an energy version of the Fisher scaling law [30]:

α = (2 − η′)ν. (8)

By assuming η′ = 0, which is precisely the value obtained
from MC simulations of the short-range versions of mean-
field structural glass models [32,31], we find the scaling
law ν = α/2 for the fragile glass-forming liquids [17].
The structural specific heat Cs is the temperature rate
of change of the configurational energy 〈φ〉. In view of
equation (4) for supercooled liquids, it is approximately
given by

Cs = −
(

∂Eeff

∂T

)
V

. (9)

In writing equation (9) the difference between constant
pressure and constant volume specific heat is neglected:
calculations correspond to a canonical ensemble. Using
the effective energy barrier embodied in the VF equation,
Eeff(T ) = DT0kBT/(T − T0), we have

Cs = DkBT 2
0 /(T − T0)2. (10)

Equation (10) implies a power-law increase for the struc-
tural specific heat of the fragile liquids, with an exponent
α = 2. (It is noteworthy that a critical power-law increase
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for the structural specific heat has been recently reported
in MC simulations of a BMLJ model liquid [20].) We also
note that ν = α/2 = 1. Thus, the bond ordering pic-
ture predicts the following thermal behavior for ξBO in
the fragile liquids:

ξBO(T ) = ξ∞T/(T − T0) (11)

where, ξ∞ is a high-T or microscopic lengthscale, about
the size of an atomic diameter. ξBO(T ) sets the lengthscale
for a typical droplet of low configuratinal energy, i.e. a
tightly bound region inside the liquid.

3.2 Apparent correlations between ξBO and ξhet

A molecule in a tightly bound region tends to be less mo-
bile, and the larger the region, the more constrained is
the molecular movement. In fact, in molecular dynam-
ics simulations of a model liquid water, the droplets of
low potential energy are found to be correlated with the
dynamic heterogeneities in the form of clusters of low
molecular mobility [21]. It is a matter of considerable in-
terest that the predictions of a recent theoretical model
for the thermal variation of ξhet (involving a purely dy-
namic mechanism) is precisely of the same scaling form
as of equation (11) for ξBO [16]. Using the nucleation
theory, together with the assumption that the activated
processes involve chains/surfaces of molecular displace-
ments, it is predicted that the heterogeneity size must
vary as ξhet ∼ (T − T0)−1. The theory also is consis-
tent with the observation to the extent that it recovers
the VF equation [16]. In Table 1, we compare the val-
ues predicted by three different theoretical static lengths
at Tg, for the fragile end of the spectrum using the ratio
Tg/T0 = 1.28 ± 5.8% [33]. We note that the larger of the
three static lengths, ξBO(Tg) = 7.0 atomic diameters, is
more consistent with the experimentally measured size of
heterogeneity, ξhet(Tg) ≥ 5 atomic diameters [10].

As the dynamics is activated, this larger static length
may also be used to explain the broad distribution of
relaxation times observed for the heterogeneities at Tg.
On comparing equation (11) with the Vogel-Fulcher equa-
tion (2), the structural relaxation time of a liquid can be
written as

τα(T ) = τ∞ exp[DξBO(T )] (12)

where, ξBO(T ) is measured in units of atomic diameter,
and D is of the order of unity for the fragile liquids. This
also is the timescale associated with the slowest relaxation
mechanism within the liquid. We note that potential en-
ergy droplets of all linear sizes x ≤ ξBO(T ) do occur in-
side the liquid with significant probability [34]. In view of
equation (12), it is reasonable to assume an activated form
τ ∼ eDx for the mean life-time of a droplet of low potential
energy of size x ≤ ξBO(T ). Allowing x to vary by a fac-
tor of seven in accordance with ξBO(Tg) = 7.0, we have τ
values that vary by 3 decades. This therefore explains the
existence of dynamic heterogeneities near Tg whose life-
times differ by several orders of magnitude [10]. We also
see that in the mobile regions the potential energy droplet

size x, tends to be rather small, about the size of an atomic
diameter. A molecule in this region can move freely un-
hindered by the neighbors. However, as x → ξBO(T ), the
movement of a typical molecule in the droplet becomes
constrained by not only its immediate, but further neigh-
bors as well, as a result of which the molecular mobility
is severely reduced over a timescale that is the life-time
of the potential energy droplet, τ ∼ eDx. Thus, it is not
only the state of bonding of a given molecule, but the size
of the potential energy droplet to which it belongs that
influence its mobility.

4 Summary

To summarize, the static relaxation length ξBO(Tg) is
more consistent with the experimentally measured size of
dynamic heterogeneity in deeply supercooled fragile liq-
uids. This larger static length may also be used to ex-
plain the wide distribution of relaxation times associated
with the heterogeneities, which is central to explaining the
stretched exponential relaxation and the decoupling of dif-
fusion from viscosity in deeply supercooled liquids. It is a
matter of considerable interest that the thermal behavior
of ξBO(T ) is precisely of the same form as predicted by
a recent dynamical theory for ξhet(T ). The above corre-
lations are significant enough to warrant further experi-
mental and simulational investigation into the potential
energy droplet picture as a possible physical origin for
the dynamic heterogeneities observed in the glass-forming
liquids.
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